國中數學怎么才能學好?重難點知識匯總奉上,解決了95%的中考難題!

時間:2017-09-17 12:50:07 來源:簡單國中生

原標題:國中數學怎么才能學好?重難點知識匯總奉上,解決了95%的中考難題!

國中數學到底怎么才能學好?這是很多同學都煩亂的問題,今天豆姐跟大家分享的就是一位老師寫的國中數學重難點以及各年級學習數學要注意哪些“坑”,本文建議收藏,記得分享給需要的同學!

一、構建完整的知識框架

1.構建完整的知識框架是我們解決問題的基礎,想要學好數學必須重視基礎概念,必須加深對知識點的了解,然后會運用知識點解決問題,遇到問題自己學會反思及多維度的思考,最后形成自己的思路和方法。但有很多國中學生不重視書本的概念,對某些概念一知半解,對知識點沒有吃透,知識體系不完整,就會出現成績飄忽不定的現象。

2.正確了解和掌握數學的一些基本概念、法則、公式、定理,把握他們之間的內在聯系。由于數學是一門知識的連貫性和邏輯性都很強的學科,正確掌握學過的每一個概念、法則、公式、定理可以為以后的學習打下良好的基礎,如果在學習某一內容或解某一題時碰到了困難,那么很有可能就是因為與其有關的、以前的一些基本知識沒有掌握好所造成的,因此要經常查缺補漏,找到問題并及時解決之,努力做到發現一個問題及時解決一個問題。只有基礎扎實,解決問題才能得心應手,成績才會提高。

二、國中數學中考知識重難點分析

1.函數(一次函數、反比例函數、二次函數)中考占總分的15%左右。

特別是二次函數是中考的重點,也是中考的難點,在填空、選擇、解答題中均會出現,且知識點多,題型多變。

而且一道解答題一般會在試卷最后兩題中出現,一般二次函數的應用二次函數的圖像、性質及三角形、四邊形綜合題難度較大。有一定難度。

如果在這一環節掌握不好,將會直接影響代數的基礎,會對中考的分數會造成很大的影響。

2.整式、分式、二次根式的化簡運算

整式的運算、因式分解、二次根式、科學計數法及分式化簡等都是國中學習的重點,它貫穿于整個國中數學的知識,是我們進行數學運算的基礎,其中因式分解及了解因式分解和整式乘法運算的關系、分式的運算是難點。

中考一般以選擇、填空形式出現,但卻是解答題完整解答的基礎。運算能力的熟練程度和答題的正確率有直接的關系,掌握不好,答題正確率就不會很高,進而后面的的方程、不等式、函數也無法學好。

3.應用題,中考中占總分的30%左右

包括方程(組)應用,一元一次不等式(組)應用,函數應用,解三角形應用,機率幾率與統計應用幾種題型。

一般會出現二至三道解答題(30分左右)及2—3道選擇、填空題(10分—15分),占中考總分的30%左右。

現在中考對數學實際應用的考量會越來越多,數學與生活聯系越來越緊密,應用題要求學生的了解辨別能力很強,能從問題中讀出必要的數學資訊,并從數學的角度尋求解決問題的策略和方法。方程思想、函數思想、數形結合思想也是中學階段一種很重要的數學思想、是解決很多問題的工具。

4.三角形(全等、相似、角平分線、中垂線、高線、解直角三角形)、四邊形(平行四邊形、矩形、菱形、正方形),中考中占總分25%左右。

三角形是國中幾何圖形中內容最多的一塊知識,也是學好平面幾何的必要基礎,貫穿初二到到初三的幾何知識,其中的幾何證明題及線段長度和角度的計算對很多學生是難點。

只有學好了三角形,后面的四邊形乃至圓的證明就容易了解掌握了,反之,后面的一切幾何證明更將無從下手,沒有清晰的思路。

其中解三角形在初三下冊學習,是以直角三角形為基礎的,在中考中會以船的觸礁、樓高、影子問題出現一道大題。因此在國中數學學習中也是一個重點。

四邊形在初二進行學習的,其中特殊四邊形的性質及判定定理很多,容易混淆,深刻了解這些性質和判定、理清它們之間的聯系是解決證明和計算的基礎,四邊形中題型多變,計算、證明都有一定難度。經常在中考選擇題、填空題及解答題的壓軸題(最后一題)中出現,對學生綜合運用知識的能力要求較高。

5.圓,中考中占總分的10%左右

包括圓的基本性質,點、直線與圓位置關系,圓心角與圓周角,切線的性質和判定,扇形弧長及面積,這章節知識是在初三學習的。

其中切線的性質和判定、圓中的基本性質的了解和運用、直線與圓的位置關系、圓中的一些線段長度及角度的計算是重點也是難點。

三、各年級教材知識重難點分析

七年級教材重難點分析

教學內容

重點

難點

易錯點

有理數

有理數的分類數軸、相反數、絕對值及有理數的運算。

關于絕對值化簡;有理數的混合運算符號情況;規律探索題

絕對值的化簡;運算時符號的錯誤;規律探索無從下手

整式的加減

單項式、多項式、整式的概念;合并同類項;

求代數式的值;整式的加減運算、求值;規律探索

單項式及多項式中的很多概念性的錯誤;合并時符號錯誤

一元一次方程

等式的基本性質及一元一次方程的解法;實際應用

關于一元一次方程的應用題。

去分母、去括號過程中容易出錯

幾何圖形初步

線段、直線、射線的認識;線段、角的度量與比較余角、補角

線段、直線、射線的區別;角度的大小比較運算;時鐘問題

線段、直線、射線的認識;

教學內容

重點

難點

易錯點

相交線與平行線

了解“三線八角”;平行線的性質和判定

準確了解判斷兩條直線平行的條件和特征;了解性質和判定的關系

不能正確的了解性質和條件的關系

實數

平方根、立方根的概念、實數的定義;區分有理數和無理數

了解無理數是無限不循環小數;實數運算的某些技巧掌握

無理數的表現形式;了解平方根有兩個

平面直角坐標系

平面直角坐標系的概念;點的坐標表示;點的坐標變換

點的坐標變換(平移、對稱)

坐標的表示;坐標變

二元一次方程組

用代入法,加減法解二元一次方程組

二元一次方程組的應用題;二元一次方程組和一次函數圖像的關系

二元一次方程組的解法及應用題

不等式與不等式組

不等式的基本性質;一元一次不等式(組)的解及解法

元一次不等式組取解集;一元一次不等式(組)處理應用問題;求字母取值范圍的問題

一元一次不等式組解集的確定;解集端點值的包含問題

數據的收集、整理和描述

了解隨機抽樣、個體、總體、樣本、樣本容量、頻率、頻數等概念

了解頻數、頻率的概念,

樣本、樣本容量的區分;全面調查和抽樣調查的區分

八年級教材重難點

八上

教學內容

重點

難點

易錯點

十一

三角形

三角形的邊、角的關系;三角形的“三線”;重心的概念及性質

三角形三邊的關系;三角形的的“三線”

三角形的三線的區分;多邊形的外角

十二

全等三角形

三角形全等的判定與探索;利用三角形全等解決實際問題。

靈活運用三角形全等的各種方法證明三角形全等;利用全等三角形的性質證明邊、角相等

準確把握三角形全等的條件,以避免條件不完全的判定、及錯判,如錯用邊邊角

十三

軸對稱

軸對稱的概念和性質;中垂線的性質運用;等腰三角形的的性質和判定

中垂線性質的運用;等腰三角形的性質的運用;利用軸對稱解決最短路徑問題

對稱軸是一條直線而非線段;最短路徑問題

整式的乘除與因式分解

冪的運算法則;乘法公式;因式分解的方法

乘法公式的綜合考量;準確了解因式分解和整式乘法運算的關系

完全平方公式的運用;因式分解不徹底

分式

分式的意義及用分式的基本性質解題;分式的化簡運算;分式方程的解法和應用

如何確定最簡公分母;分式方程的一般解法;利用分式方程解決應用題

分式方程必須檢驗;通分與解方程時去分母的區別

八下

教學內容

重點

難點

易錯點

十六

二次根式

二次根式的性質;二次根式的化簡運算;二次根式的幾何應用

最簡二次根式的了解;二次根式的化簡及運算技巧;

二次根式的化簡時沒有到最簡;運算結果沒有寫最簡

十七

勾股定理

勾股定理的概念及應用;勾股定理及其逆定理的關系;

了解定理和逆定理的概念;勾股定理的應用,如最短路徑問題

沒理清勾股定理及其逆定理的關系

十八

平行四邊形

平行四邊形及特殊的平行四邊形的性質和判定;正確了解他們的關系;三角形中位線定理

平行四邊形及特殊的平行四邊形的性質和判定的綜合運用;證明和線段、角度的計算;

平行四邊形的判;特別平行四邊形的判

十九

一次函數

一次函數解析式及其圖象;一次函數的概念和性質;待定系數法。

對函數的了解;一次函數圖像的運用;數形結合思想的考量

一次函數圖像與方程、方程組、不等式的關系;

二十

數據的分析

了解頻平均數、中位數、眾數的概念方差、標準差的計算

了解頻平均數、中位數、眾數的概念方差、標準差的計算

方差、標準差的計算。

九年級教材重難點分析

九上

教學內容

重點

難點

易錯點

二十一

一元二次方程

用配方法、公式法、因式分解法解一元二次方程;一元二次方程的應用

用配方法解一元二次方程;實際問題中的一元二次方程

利用因式分解法及公式法解方程

二十二

二次函數

二次函數的解析式、性質和圖像;二次函數解決應用題

靈活運用二次函數的圖像和性質解決問題;二次函數的實際應用(最值問題)

二次函數圖形問題;最值問題

二十三

旋轉

了解中心對稱和中心對稱圖形的概念

坐標系中點的中心對稱變換

旋轉作圖

二十四

圓的有關性質(垂徑定理與其推論,圓周角與圓心角的關系);直線與圓的位置關系;扇形弧長、圓錐面積的計算

圓的基本性質的了解;直線與圓相切的判定方法;圓心角與弧、弦、圓周角之間的關系

切線的概念了解圓錐的側面積弧長的計算

二十五

機率幾率初步

機率幾率的定義;用列表法和畫樹狀圖法計算簡單事件機率幾率;

了解用事件發生的頻率來猜想機率幾率的概念;用列表法和畫樹狀圖法計算簡單事件機率幾率;

頻率是在一個樣本中出現的,而機率幾率是整個事件來說的。

九下

教學內容

重點

難點

易錯點

二十六

反比例函數

反比例函數的表達式;反比例函數的圖象與性質;雙曲線和直線相交的問題

反比例函數的應用;猜想證明與拓廣;雙曲線與直線相交的綜合問題;有關三角形的面積問題

注意反比例函數的圖象與XY軸無交點,且越來越逼近

二十七

相似

相似三角形的判定和性質的應用

了解相似和位似的關系;相似三角形性質的應用(如面積比等于相似比的平方);利用相似解決實際問題

比例尺為相似比;相似比的平方等于面積比

二十八

銳角三角函數

對三角函數的準確了解;用三角函數和勾股定了解決實際應用問題

用三角函數聯系實際解決實際問題;用邊角關系處理實際生活中的問題

特殊角三角函數值記錯;

二十九

投影與視圖

會畫、看某個物體的三視圖;由三視圖描述立體圖形的形狀;

了解平行投影與中心投影的區別;由三視圖描述立體圖形的形狀;

三視圖的了解;中心投影與平行投影的區別

備注:教材版本為人教版,黑體加粗標題為各年級重難點章節

四、各年級的常見現象

初一學不好數學

許多國小數學學科成績很好的學生到了國中數學成績會出現下滑,成績不穩定等現象。國中數學與國小數學相比,知識的深度、廣度、能力要求都有不小的提高。

對概念、法則、公式、定理知識一知半解,沒有吃透課本內容。課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕作業、套題型,遇到難題缺乏思考,學習方法的缺乏或不得當嚴重制約學生的有效思維,久而久之容易形成思維惰性,學不好數學。 

以上這些問題如果在初一階段不能很好的解決,在初二的兩極分化階段,同學們可能就會出現成績的滑坡。相反,如果能夠打好初一數學基礎,初二的學習只會是更上一層樓!

策略:

1.狠抓基礎,循序漸進。立足課本,把課本知識點吃透,輔以基礎知識、基本方法的訓練,先以基礎題為主,培養運算能力,提升自信心。等基礎知識熟悉了,再逐漸加深難度,能舉一反三,形成自己的思維。能靈活運用知識點。

2.培養良好的學習習慣。及時預習書本知識,然后帶著問題去聽課,提高課堂效率。

總結相似的題型,收集自己的典型錯題和不會做的題目。就不懂得問題,積極討論、請教老師。自己制定每日學習計劃,形成習慣。

3.提高作業質量和效率。每天作業是對當天所學內容的鞏固,如果能高質量的完成當天的作業,就能把當天所學的知識點消化吸收,遺留的問題就少,進而學習效率就高。

初二數學成績下滑

國中數學是一個整體。初二的難點多,初三的考點多。相對而言,初一數學知識點雖然很多,但都比較基礎,中考多以基礎題為主,要求不高。

初二是國中數學學習的一個拐點,坡度突然增加,知識點上的增多和難度的增加,在學習方法上學生是很容易適應的。特別是幾何內容的增加,它的研究對象從“數”到“形”發生變化,方法也從“運算”到“推理”發生變化,學生的分析能力和表達能力跟不上就很難從圖形中找到關系,推理論證困難學科(物理)也相應增加,學業加重,精力分散,有些學生有些力不從心,缺乏毅力的,就會慢慢掉隊。

策略:

1.學會給自己明確目標,以增強學習的目的性、主動性。

2.從基礎知識入手,用簡單、中等的題來訓練自己的解題思路,思考“憑什么”從第一步走到第二步,它們之間的關聯性、邏輯性是怎樣的?從而真正形成自己的做題思維。

3.堅持養成總結題型、錯題、典型題的習慣,常堅持3—4周后,就能養成習慣。

4.過好幾何入門關——識圖、書寫、推理。書寫是幾何入門的難點,有條理的書寫時培養邏輯推理能力的保證。應根據題目的要求,步步有據,句句有理,由條件推理得到結論。對書本上的定義、性質定理、判定定理要非常熟悉。

5.進行知識歸類,如將判定方法、定理歸類整合,使所學知識系統化。

初三基礎不扎實,力不從心

進入初三以后,學生的學習到了一個新的階段,為了總復習能有更多的時間,各科上課節奏開始加快,學業任務相應加重,基礎不扎實的學生就會跟不上,嚴重時自信心會嚴重受挫,感覺力不從心。

平時做試卷審題不嚴,看題不清,能做對的題目也沒拿到分。小錯不斷,沒有養成積累錯題的習慣。遇到綜合性問題時,缺乏解題思路和方法。遇到難題,就自動放棄了。長時間持續下去,喪失自信心,成績也會下降。

策略:

1.第一步要增強自己的自信心。從時間、中考試卷難度、現階段的情況、預期目標、成功提高成績學生案例等方面分析,增強學習動力。

2.狠抓基礎,循序漸進。利用上初三前的暑假把初一、初二年級的知識漏洞通過查、學、練、測的循環模式補起來,形成完整的知識框架,在繼續學習新知識時能跟上老師節奏,自然會輕松很多。

3.在學習的過程中,培養預習、帶著問題上課、復習、積累、總結的習慣,從“要學”變成“會學”,最后會“自學”。不僅對現在很重要,對以后高中的學習也有很大幫助。

4.基礎扎實之后,可以逐漸增加難度,做一些中等難度的題目,也不能盲目的只顧做題,要注重思維、思考問題的能力,解題的方法、技巧的訓練。

5.突出重點,突破難點。認真分析按照中考考綱及近幾年中考數學試卷命題的變化規律,對重點考查內容進行分類訓練,對難點進行個個擊破。

6.熟悉并運用常用的數學思想,如方程思想、整體思想、化歸思想、函數思想、數形結合思想、分類討論思想等。

7.中考基礎題真題演練。要求達到自己理想的正確率,也可以全面考量知識漏洞情況,可以再做復習。

8.中考壓軸題突破。縱觀數學中考命題規律,壓軸題主要出現在函數和三角形或四邊形或圓部分的動態問題或分類討論的內容。對壓軸題進行分類剖析,形成解題思路和技巧。

文章來源自拓思國中數學工作室,歡迎收藏及轉發到朋友圈,如涉及版權問題,請及時聯系刪除

海峽線上 haixiaol.com 2017-09-17 12:50:07

中考 數學 三角形 性質 函數

數學學不好怎么辦?10分鐘幫你記住國中數學公式和規律

題:數學學不好怎么辦?10分鐘幫你記住國中數學公式和規律數學學不好,很大一部分原因是學生對于公式掌握的熟練程度不夠,今天數姐將國中生所學的數學公式一一列舉出來,希望大家能熟練掌握,期末數學成績能有所提高。特殊點的坐標特征坐標平面點(x,y),橫在前來縱在后;(+,+),(-,+),(-,-)和(+ [詳情]

http://haixiaol.com/n6418208.html

不可不知的10種中考數學解題技巧

原標題:不可不知的10種中考數學解題技巧1、配方法:所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用非常廣泛,在因式分解、化簡根 [詳情]

http://haixiaol.com/n6427559.html

重點復習:國中數學主要知識,提前學會,對整個國中都很有用

原標題:重點復習:國中數學主要知識,提前學會,對整個國中都很有用“十三五”國家全面實施教育綜合改革,實行全新的學業水準考試,并將綜合貭素評價納入錄取參考,突出對學生的多元評價錄取。貭素教育教學勢在必行!---《校朋,綜合貭素實時評價系統,優秀教師的選擇》國中數學主要知識主要覆蓋三種函數:一次函數( [詳情]

http://haixiaol.com/n6436405.html

寸鏡推薦丨寸鏡先生幫你解決永恒的“世紀難題”

原標題:寸鏡推薦丨寸鏡先生幫你解決永恒的“世紀難題” [詳情]

http://haixiaol.com/n6439174.html

4個技巧幫你解決應聘者爽約難題

原標題:4個技巧幫你解決應聘者爽約難題在日常招聘過程中,遭遇應聘者面試爽約,是屢見不鮮、令人頭痛而又無奈的事情。以下是應聘者爽約的典型現象及相應對策:現象1:應聘者確實臨時有事,但不知如何告知HR。反思:你是否給應聘者留下了隨時可以找得到你的電話?方案:關于聯系方式,建議最好留下直撥電話,而不是分機 [詳情]

http://haixiaol.com/n6443243.html

季節交替時,一件衛衣就能幫你解決搭配難題!

季節交替時,一件衛衣就能幫你解決搭配難題!1·休閑衛衣充滿著青春朝氣!胸前印花字母圖案休閑中也能傳輸時尚的感覺,帽口抽繩休閑時尚個性感兼顧實用,落肩的袖型,方便穿脫,而且很顯瘦哦!搭配牛仔褲,小腳褲都很率性時尚!2·輕輕松松的圓領套頭休閑款式,無論是單穿還是外搭牛仔外套都炒雞不錯看,秋冬我就想著出一件 [詳情]

http://haixiaol.com/n6481594.html

名師分享學好高中數學的三大突破口

標題:名師分享學好高中數學的三大突破口作者:樊瑞軍很多高中學生都有這樣一種親身體會,高中數學越學越吃力,題目做了無數,然而考試時就是不會,考場中的題目從來都沒有見過一樣,一做題就無從下手,一看答案就有感覺,于是很多同學希望刷題掃清記住所有題目,然而高中數學每年的新題不斷涌現,就算功能再強大的搜題軟 [詳情]

http://haixiaol.com/n6490650.html

聲明:本網部分信息轉載於其他網站,如稿件涉及版權等問題,請聯絡我們